
B
THE MINIBASE SOFTWARE

Practice is the best of all instructors.

—Publius Syrus, 42 B.C.

Minibase is a small relational DBMS, together with a suite of visualization tools, that

has been developed for use with this book. While the book makes no direct reference to

the software and can be used independently, Minibase offers instructors an opportunity

to design a variety of hands-on assignments, with or without programming. To see an

online description of the software, visit this URL:

http://www.cs.wisc.edu/˜dbbook/minibase.html

The software is available freely through ftp. By registering themselves as users at

the URL for the book, instructors can receive prompt notification of any major bug

reports and fixes. Sample project assignments, which elaborate upon some of the

briefly sketched ideas in the project-based exercises at the end of chapters, can be seen

at

http://www.cs.wisc.edu/˜dbbook/minihwk.html

Instructors should consider making small modifications to each assignment to discour-

age undesirable ‘code reuse’ by students; assignment handouts formatted using Latex

are available by ftp. Instructors can also obtain solutions to these assignments by

contacting the authors (raghu@cs.wisc.edu, johannes@cs.cornell.edu).

B.1 WHAT’S AVAILABLE

Minibase is intended to supplement the use of a commercial DBMS such as Oracle or

Sybase in course projects, not to replace them. While a commercial DBMS is ideal

for SQL assignments, it does not allow students to understand how the DBMS works.

Minibase is intended to address the latter issue; the subset of SQL that it supports is

intentionally kept small, and students should also be asked to use a commercial DBMS

for writing SQL queries and programs. Minibase is provided on an as-is basis with no

warranties or restrictions for educational or personal use. It includes the following:

842



The Minibase Software 843

Code for a small single-user relational DBMS, including a parser and query opti-

mizer for a subset of SQL, and components designed to be (re)written by students

as project assignments: heap files, buffer manager, B+ trees, sorting, and joins.

Graphical visualization tools to aid in students’ exploration and understanding of

the behavior of the buffer management, B+ tree, and query optimization compo-

nents of the system. There is also a graphical tool to refine a relational database

design using normalization.

B.2 OVERVIEW OF MINIBASE ASSIGNMENTS

Several assignments involving the use of Minibase are described below. Each of these

has been tested in a course already, but the details of how Minibase is set up might vary

at your school, so you may have to modify the assignments accordingly. If you plan to

use these assignments, you are advised to download and try them at your site well in

advance of handing them to students. We have done our best to test and document

these assignments, and the Minibase software, but bugs undoubtedly persist. Please

report bugs at this URL:

http://www.cs.wisc.edu/˜dbbook/minibase.comments.html

I hope that users will contribute bug fixes, additional project assignments, and exten-

sions to Minibase. These will be made publicly available through the Minibase site,

together with pointers to the authors.

B.2.1 Overview of Programming Projects

In several assignments, students are asked to rewrite a component of Minibase. The

book provides the necessary background for all of these assignments, and the assign-

ment handout provides additional system-level details. The online HTML documen-

tation provides an overview of the software, in particular the component interfaces,

and can be downloaded and installed at each school that uses Minibase. The projects

listed below should be assigned after covering the relevant material from the indicated

chapter.

Buffer manager (Chapter 7): Students are given code for the layer that man-

ages space on disk and supports the concept of pages with page ids. They are

asked to implement a buffer manager that brings requested pages into memory if

they are not already there. One variation of this assignment could use different

replacement policies. Students are asked to assume a single-user environment,

with no concurrency control or recovery management.

HF page (Chapter 7): Students must write code that manages records on a

page using a slot-directory page format to keep track of records on a page. Possible



844 Appendix B

variants include fixed-length versus variable-length records and other ways to keep

track of records on a page.

Heap files (Chapter 7): Using the HF page and buffer manager code, students

are asked to implement a layer that supports the abstraction of files of unordered

pages, that is, heap files.

B+ trees (Chapter 9): This is one of the more complex assignments. Students

have to implement a page class that maintains records in sorted order within a

page and implement the B+ tree index structure to impose a sort order across

several leaf-level pages. Indexes store 〈key, record-pointer〉 pairs in leaf pages, and

data records are stored separately (in heap files). Similar assignments can easily

be created for Linear Hashing or Extendible Hashing index structures.

External sorting (Chapter 11): Building upon the buffer manager and heap

file layers, students are asked to implement external merge-sort. The emphasis is

on minimizing I/O, rather than on the in-memory sort used to create sorted runs.

Sort-merge join (Chapter 12): Building upon the code for external sorting,

students are asked to implement the sort-merge join algorithm. This assignment

can be easily modified to create assignments that involve other join algorithms.

Index nested-loop join (Chapter 12): This assignment is similar to the sort-

merge join assignment, but relies on B+ tree (or other indexing) code, instead of

sorting code.

B.2.2 Overview of Nonprogramming Assignments

Four assignments that do not require students to write any code (other than SQL, in

one assignment) are also available.

Optimizer exercises (Chapter 13): The Minibase optimizer visualizer offers

a flexible tool to explore how a typical relational query optimizer works. It ac-

cepts single-block SQL queries (including some queries that cannot be executed

in Minibase, such as queries involving grouping and aggregate operators). Stu-

dents can inspect and modify synthetic catalogs, add and drop indexes, enable or

disable different join algorithms, enable or disable index-only evaluation strate-

gies, and see the effect of such changes on the plan produced for a given query.

All (sub)plans generated by an iterative System R style optimizer can be viewed,

ordered by the iteration in which they are generated, and details on a given plan

can be obtained readily. All interaction with the optimizer visualizer is through a

GUI and requires no programming.

The assignment introduces students to this tool and then requires them to answer

questions involving specific catalogs, queries, and plans generated by controlling

various parameters.



The Minibase Software 845

Buffer manager viewer (Chapter 12): This viewer lets students visualize

how pages are moved in and out of the buffer pool, their status (e.g., dirty bit,

pin count) while in the pool, and some statistics (e.g., number of hits). The as-

signment requires students to generate traces by modifying some trace-generation

code (provided) and to answer questions about these traces by using the visual-

izer to look at them. While this assignment can be used after covering Chapter

7, deferring it until after Chapter 12 enables students to examine traces that are

representative of different relational operations.

B+ tree viewer (Chapter 9): This viewer lets students see a B+ tree as it is

modified through insert and delete statements. The assignment requires students

to work with trace files, answer questions about them, and generate operation

traces (i.e., a sequence of inserts and deletes) that create specified kinds of trees.

Normalization tool (Chapter 15): The normalization viewer is a tool for nor-

malizing relational tables. It supports the concept of a refinement session, in

which a schema is decomposed repeatedly and the resulting decomposition tree is

then saved. For a given schema, a user might consider several alternative decom-

positions (more precisely, decomposition trees), and each of these can be saved

as a refinement session. Refinement sessions are a very flexible and convenient

mechanism for trying out several alternative decomposition strategies. The nor-

malization assignment introduces students to this tool and asks design-oriented

questions involving the use of the tool.

Assignments that require students to evaluate various components can also be devel-

oped. For example, students can be asked to compare different join methods, different

index methods, and different buffer management policies.

B.3 ACKNOWLEDGMENTS

The Minibase software was inpired by Minirel, a small relational DBMS developed by

David DeWitt for instructional use. Minibase was developed by a large number of

dedicated students over a long time, and the design was guided by Mike Carey and R.

Ramakrishnan. See the online documentation for more on Minibase’s history.




